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Abstract

Numerical diffusion in a flux-corrected transport (FCT) algorithm embedded in a Navier–Stokes solver (TINY3D)

has been analytically and numerically studied for flows where density variations can be neglected. It is found that

numerical diffusion can be analytically expressed in a form similar to that of viscous diffusion. The effective total

viscosity can be written as an effective viscosity which is the sum of the physical and numerical viscosities. A low-

Mach-number laminar boundary-layer flow is used to test the analytical model of numerical diffusion. A series of

simulations, in which the amount of numerical diffusion is varied, show results consistent with predictions of bound-

ary-layer theory when the effective total viscosity is used. The minimum required numerical viscosity to meet the linear

stability condition and the lower and upper limits of the cell Reynolds number are also derived.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical diffusion is present and often required in all fluid dynamics simulations. When viscous diffu-

sion is not sufficient to ensure stability, numerical diffusion can be used to stabilize algorithms. One example

of this use of numerical diffusion is to solve numerical problems with shock waves, since shock-capturing is
particularly sensitive to numerical instabilities. Solving this type of problem has been the focus of substan-

tial efforts in the past 50 years. Initial efforts to develop algorithms with good shock-capturing properties

introduced ‘‘artificial’’ viscosities or diffusion, such as the work by Von Neumann and Richtmyer [1], Lax

and Wendroff [2], and MacCormack and Baldwin [3]. In other approaches, numerical diffusion is

introduced implicitly, and one of these approaches is flux limiting, which allows the use of higher-order
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algorithms and still maintains stability. Flux-limiting is based on adjusting the fluxes going in and out of

computational cells, with the objective of ensuring that no unphysical local minima or maxima are intro-

duced by the numerical convection algorithm. It is basic to a class of nonlinear monotone (positivity pre-

serving) algorithms such as FCT, PPM, higher-order Gudonov, and certain TVD methods. The

introduction of flux-limiting revolutionized the computation of the continuity equations and therefore of
shocks waves and compressible flow.

Although numerical diffusion is useful for stabilizing the algorithms, excessive numerical diffusion, either

explicit or implicit, may produce misleading results in some applications. Therefore, it is important to quan-

tify the effects of numerical diffusion, especially in those cases where physical viscosity plays a major role,

such as boundary-layer flows and mixing problems. Numerical diffusion and its effects have been studied

and reviewed extensively in the past by a number of authors, such as Hirsch [4], Anderson [5], Tannehill

et al. [6], Oran and Boris [7], and Wang and Richards [8].

Flux-corrected transport (FCT) [9,10] algorithms are high-order, conservative, monotone, positivity-
preserving methods used to solve coupled conservation equations, such as those in the Euler and Navier–

Stokes equations. Numerical diffusion in FCT algorithms has been previously investigated [11,12]. Shear

layer calculations by Book et al. [11] were used to study numerical diffusion in a FCT algorithm by varying

the antidiffusion coefficient. Grinstein andGuirguis [12] used a similar FCT algorithm to study numerical dif-

fusion in inviscid simulations of a low-Mach-numbermixing layer. They proposed a numerical viscositymod-

el to quantify the numerical diffusion in their algorithm and also investigated the effects on numerical diffusion

of grid resolution, grid-aspect ratio, and the free-stream velocity ratio. Their work showed that the numerical

diffusion in the shear flow computed using FCT could emulate the effects of the physical viscosity.
The purpose of this paper is to evaluate numerical diffusion in the LCPFCT algorithm [13], the standard

version of FCT, as it is embedded in the Navier–Stokes solver, TINY3D. This is a Navier–Stokes code that

uses FCT combined with solutions of diffusive-transport terms that are modeled explicitly using a second-

order finite-volume representation. In this paper, numerical diffusion has been studied by looking at an

equivalent partial differential equation for the FCT algorithm and investigating those terms that contribute

to numerical diffusion. Hirt [14] andWarming and Hyett [15] used a similar approach, to which they referred

as a ‘‘modified equation approach’’, to study the instability problem and the nature of both dissipative and

dispersive errors. Recently, truncation errors introduced by flux limiters have been used to mimic subgrid-
stress models in large-eddy simulations, an example of which is the monotonically integrated large-eddy sim-

ulation (MILES) [16–20], where models calibrating the effect of the flux limiter on the subgrid stresses have

been investigated. The goal of this paper, however, is different from that of MILES in that here, global

numerical diffusion is the focus of the study, rather than the diffusion introduced by the flux limiter.

The plan of this paper is to describe FCT, present the equivalent partial differential equation for this

algorithm, derive the numerical viscosity, and then derive analytical expressions for numerical diffusion

of multidimensional problems. The test problem, a low-Mach-number laminar flow over a flat plate,

was chosen for its simplicity and the availability of exact theoretical solutions. We first test TINY3D by
performing a simulation in which there is negligible numerical diffusion. We then carry out simulations with

various amounts of numerical diffusion to test the analytical model of numerical diffusion. The stability

condition and the cell Reynolds number are discussed along with a discussion of effects of the FCT flux

limiter and the anisotropy of numerical viscosity.
2. FCT and an equivalent PDE

We start with a one-dimensional continuity equation that has the form
oq
ot

þ oqU
ox

¼ 0; ð1Þ
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where U is the local convection velocity and q is a convected quantity. A FCT solution for this type of

equation consists of three major steps (more information concerning this algorithm can be found in

[13]):

(1) Central difference the continuity equation in a conserved form:
qT
i ¼ qo

i �
1

2
�iþ1=2ðqo

iþ1 þ qo
i Þ � �i�1=2ðqo

i þ qo
i�1Þ

� �
; ð2Þ
where �iþ1=2 ¼ Uiþ1=2

Dt
Dx

is the local Courant number. The quantity Dx is the grid size and Dt is the time step.

The subscript i is the location of the center of the computational cell in the x-direction, and superscript o

denotes the quantity at time step n � 1. A uniform grid is assumed for simplicity. This finite-difference

equation can be rewritten as
qT
i ¼ aTi q

o
i�1 þ bTi q

o
i þ cTi q

o
iþ1 ð3Þ
with
aTi ¼ 1
2
�i�1=2;

bTi ¼ 1� 1
2
ð�iþ1=2 � �i�1=2Þ;

cTi ¼ � 1
2
�iþ1=2.

8><
>: ð4Þ
Since Eq. (2) is not a linearly stable algorithm, the following steps add numerical diffusion to stabilize this

algorithm.

(2) Add numerical diffusion to stabilize the algorithm:
~qi ¼ qT
i þ mfiþ1=2ðq

o
iþ1 � qo

i Þ � mfi�1=2ðq
o
i � qo

i�1Þ. ð5Þ
(3) Add antidiffusion to limit the amount of numerical diffusion:
qn
i ¼ ~qi � lf

iþ1=2ðq
T
iþ1 � qT

i Þ þ lf
i�1=2ðq

T
i � qT

i�1Þ. ð6Þ
A flux-limiting technique is used at this stage to assure the monotonicity of the solution by adjusting the

amount of antidiffusion to avoid the generation of new maxima or minima in the solution. The final algo-

rithm then becomes
qn
i ¼ diq

o
i�2 þ eiqo

i�1 þ fiqo
i þ giq

o
iþ1 þ hiqo

iþ2 ð7Þ
with
di ¼ �lf
i�1=2a

T
i�1;

ei ¼ ð1þ lf
i�1=2 þ lf

iþ1=2ÞaTi � lf
i�1=2b

T
i�1 þ mfi�1=2;

fi ¼ ð1þ lf
i�1=2 þ lf

iþ1=2Þb
T
i � lf

i�1=2c
T
i�1 � lf

iþ1=2a
T
iþ1 � ðmfi�1=2 þ mfiþ1=2Þ;

gi ¼ ð1þ lf
i�1=2 þ lf

iþ1=2ÞcTi � lf
iþ1=2b

T
iþ1 þ mfiþ1;

hi ¼ �lf
iþ1=2c

T
i ;

8>>>>>>>><
>>>>>>>>:

ð8aÞ
where quantities mf and lf are the added diffusion and antidiffusion coefficients. If a time-step split

method is used [13], � is evaluated at the time level n + 1/2, for which an extra predictor step is needed

to obtain � at time level n + 1/2. If Eq. (4) is substituted into Eq. (8a), those coefficients can be rewrit-

ten as
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di ¼ � 1
2
lf
i�1=2�i�3=2;

ei ¼ 1
2
�i�1=2 þ 1

2
lf
i�1=2ð2�i�1=2 � �i�3=2Þ þ 1

2
lf
iþ1=2�i�1=2 þ ðmf � lf Þi�1=2;

fi ¼ 1� 1
2
ð�iþ1=2 � �i�1=2Þ þ 1

2
lf
i�1=2ð2�i�1=2 � �iþ1=2Þ

� 1
2
lf
iþ1=2ð2�iþ1=2 � �i�1=2Þ � ðmf � lf Þi�1=2 � ðmf � lf Þiþ1=2;

gi ¼ � 1
2
�iþ1=2 � 1

2
lf
iþ1=2ð2�iþ1=2 � �iþ3=2Þ � 1

2
lf
i�1=2�iþ1=2 þ ðmf � lf Þiþ1=2;

hi ¼ 1
2
lf
iþ1=2�iþ3=2.

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8bÞ
Because a finite-difference approximation introduces residual errors, a partial differential equation equiv-
alent to the algorithm is not exactly the same as the original continuity equation. Residual errors come from

various sources, such as numerical diffusion and numerical dispersion. Similar to the approach used in

[14,15,18], the equivalent partial differential equation for the final FCT algorithm shown in Eq. (7) can

be obtained by expanding the convected quantity q in terms of the Taylor series expansions in both time

and space. The result of doing this produces
oqi

ot
þ o qUð Þi

ox
¼ 0þ di þ ei þ fi þ gi þ hi � 1þ o�i

ox
Dx

� �
1

Dt
qi þ �2di � ei þ gi þ 2hi þ �ið ÞDx

Dt

� oqi

ox
þ ð22di þ ei þ gi þ 22hiÞ

Dx2

2!Dt
o2qi

o2x
� Dt

2!

o2qi

ot2
þ ð�23di � ei þ gi þ 23hiÞ

� Dx3

3!Dt
o3qi

o3x
� Dt2

3!

o3qi

ot3
þ ð24di þ ei þ gi þ 24hiÞ

Dx4

4!Dt
o4qi

o4x
� Dt3

4!

o4qi

ot4

þ OðDx5;Dt4Þ. ð9aÞ
Taylor series expansions can be further applied to the algorithm coefficients to complete this equivalent

partial differential equation, although it may not be applicable in some regions where the flux limiter is

activated,
oq
ot

þ oqU
ox

¼ 0þ oðmf � lf Þ
ox

þ
o 3lf � 1

8

� �
o�=ox

ox
� olf

ox
o�

ox

� �
Dx

� �
Dx2

Dt
oq
ox

þ 2ðmf � lf Þ þ
oð2lf �� 1

2
�Þ

ox
þ 4lf o�

ox

� �
Dx

� �
Dx2

2!Dt
o
2q
ox2

� Dt
2!

o
2q
ot2

þ ð6lf � 1Þ�þ oðmf � lf Þ
ox

Dx
� �

Dx3

3!Dt
o
3q
ox3

� Dt2

3!

o
3q
ot3

þ 2ðmf � lf Þ þ
oð8lf �� 1

2
�Þ

ox
þ 16lf o�

ox

� �
Dx

� �
Dx4

4!Dt
o
4q
ox4

� Dt3

4!

o
4q
ot4

þ OðDx4;Dt4Þ. ð9bÞ
When U is constant, and
mf ¼ 1

6
þ �2

3
;

lf ¼ D
1

6
� �2

6

� � ð10Þ
with D = 1 are used, where D controls the amount of antidiffusion, the only residual terms left are those

associated with the derivatives of the fourth order and above. Boris and Book [10] showed that this algo-

rithm has a fourth-order phase error. It is, however, second order in space and first order in time.
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3. Numerical diffusion

The numerical diffusion of the FCT algorithm shown in Eq. (7) arises from the following terms by com-

bining the first and the second derivatives in Eq. (9b):
o

ox
2ðmf � lf Þ þ

oð2lf �� 1
2
�Þ

ox
þ 4lf o�

ox

� �
Dx

� �
oq
ox

� �
Dx2

2!Dt
� Dt

2!

o2q
ot2

. ð11Þ
The remaining terms associated with the first-order derivative oq
ox contribute to the second-order phase error

when the convection velocity is not a constant. When Eq. (9b) is substituted into Eq. (11) and the high-
order terms are neglected, the term that contributes to numerical diffusion becomes
o

ox
ðmf � lf Þ � �2=2þ 3lf � 1

4

� �
o�

ox
þ �

olf

ox

� �
Dx

� �
oq
ox

� �
Dx2

Dt
. ð12Þ
The numerical viscosity can then be defined as
mnum � ðmf � lf Þ � �2=2þ 3lf � 1

4

� �
o�

ox
þ �

olf

ox

� �
Dx

� �
Dx2

Dt
. ð13Þ
If mf and lf are taken from Eq. (10), mnum can be written as
mnum � 1

6
ð1� DÞð1� �2Þ þ ð4D� 3Þ

2

o�

ox
þ oD�

ox
� �2 4D

o�

ox
þ oD�

ox

� �� �
Dx

� �
Dx2

Dt
. ð14Þ
If �2 � 1, mnum can be further simplified as
mnum � 1

6
ð1� DÞ þ ð4D� 3Þ

2

o�

ox
þ oD�

ox

� �
Dx

� �
Dx2

Dt
. ð15Þ
This numerical viscosity can be divided into two parts: a linear part, 1
6
ð1� DÞ Dx2

Dt , and a part related to the

velocity gradient, 1
6
ðð4D�3Þ

2
oU
ox þ oD�U

ox ÞDx2. The linear part is strictly dissipative if jDj < 1. The velocity-gradient
part depends on the sign of the velocity gradient. Both parts are proportional to Dx2, and the linear part is

inversely proportional to Dt, whereas the velocity-gradient part is independent of Dt. If the numerical vis-

cosity is dominated by the linear contribution, numerical viscosity increases linearly with the inverse of Dt.
This means that smaller Dt introduces more numerical diffusion. On the other hand, if the velocity-gradient

part dominates, this viscosity behaves nonlinearly.

In addition to the velocity-gradient effect, the flux limiter itself is another factor introducing nonlinear

behavior into the numerical viscosity. As mentioned above, the flux limiter is used to adjust the antidiffu-

sion to ensure monotonicity and preserve positivity. This adjustment is equivalent to reducing D in some
locations to avoid generating new maxima or minima. Where the convected variables are not monotonic, D

becomes zero and there is much larger numerical diffusion introduced at these locations. To distinguish the

contribution of the flux limiter from the global numerical diffusion, lf can be rewritten in a way similar to

that used in [16]:
lf ¼ lf
c ½1� gðq; xÞ�; ð16Þ
where lf
c is the antidiffusion coefficient applied in smooth regions. The function g(q, x) 2 j0, 1j has a value

of zero if the flux limiter is not activated , and a value of one if the flux limiter is fully activated when anti-

diffusion is completely turned off.

Similarly, we can write D = Dc[1 � g(q, x)] if lf
c ¼ Dcð16 � �2

6
Þ is used, where Dc is often called the mask

coefficient. Numerical viscosity in Eq. (15) can then be rewritten as
mnum � mnumjsm þ mnumjfl; ð17Þ
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where subscripts ‘‘sm’’ stands for smooth and ‘‘fl’’ for flux limiter. The smooth part has the form as
mnumjsm � 1

6
ð1� DcÞ þ

3ð2Dc � 1Þ
2

o�

ox
Dx

� �
Dx2

Dt
; ð18Þ
and the contribution of the flux limiter can be written accordingly if the Taylor series expansions can be

applied to the coefficients in Eq. (9a),
mnumjfl �
1

6
Dcgðq; xÞ � 3Dcgðq; xÞ

o�

ox
þ �

oDcgðq; xÞ
ox

� �
Dx

� �
Dx2

Dt
. ð19aÞ
If such expansions are not applicable, however, the original discretized form should be used for the contri-

bution from the flux limiter,
mnumjfl �
1

2
ðlcÞiþ1=2giþ1=2 þ

1

2
ðlcÞi�1=2gi�1=2 � ðlcÞiþ1=2giþ1=2�iþ3=2 þ ðlcÞi�1=2gi�1=2�i�3=2

� �
Dx2

Dt
. ð19bÞ
The smooth part of the numerical diffusion exists in all regions, but the contribution from the flux limiter is

expected to have a spatially intermittent behavior, since the flux limiter is only activated in the selected re-

gions. For flows where local maxima and minima are not frequent, such as in most of the laminar flows,
numerical viscosity can be represented by Eq. (18). Since a lower-order algorithm is used when the flux lim-

iter is activated, the global accuracy can be maintained by having enough resolution in a calculation so that

the area where the flux limiter is activated is limited to a small percentage of the computational volume.

This consideration is especially important for flows where local maxima and minima are frequent, such

as turbulent or transient flows.

Since direction splitting is used in LCPFCT [13], the evaluation of the numerical diffusion in multidimen-

sional simulations is similar to that of the one-dimensional convection equation. Although there are extra

residual errors introduced by discretizing source and viscous diffusion terms, numerical diffusion is still sim-
ilar to that shown in Eq. (12) because those extra terms are not associated with the second derivative of the

convected variable. Therefore, numerical diffusion in the density, momentum, and energy equations can be

written as
density :
o

ox
munum

oq
ox

� �
þ o

oy
mvnum

oq
oy

� �
þ o

oz
mwnum

oq
oz

� �
;

x-momentum :
o

ox
munum

oqu
ox

� �
þ o

oy
mvnum

oqu
oy

� �
þ o

oz
mwnum

oqu
oz

� �
;

y-momentum :
o

ox
munum

oqv
ox

� �
þ o

oy
mvnum

oqv
oy

� �
þ o

oz
mwnum

oqv
oz

� �
;

z-momentum :
o

ox
munum

oqw
ox

� �
þ o

oy
mvnum

oqw
oy

� �
þ o

oz
mwnum

oqw
oz

� �
;

energy :
o

ox
munum

oE
ox

� �
þ o

oy
mvnum

oE
oy

� �
þ o

oz
mwnum

oE
oz

� �
;

ð20Þ
where
munum � ðmf � lf Þ � 1

2
ð�uÞ2 þ 3lf � 1

4

� �
o�u

ox
þ �u

olf

ox

� �
Dx

� �
Dx2

Dt
; �u ¼ uDt

Dx
;

mvnum � ðmf � lf Þ � 1

2
ð�vÞ2 þ 3lf � 1

4

� �
o�v

oy
þ �v

olf

oy

� �
Dy

� �
Dy2

Dt
; �v ¼ vDt

Dy
;

mwnum � ðmf � lf Þ � 1

2
ð�wÞ2 þ 3lf � 1

4

� �
o�w

oz
þ �w

olf

oz

� �
Dz

� �
Dz2

Dt
; �w ¼ wDt

Dz
.

ð21Þ
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This numerical viscosity has three components ðmunum; mvnum; mwnumÞ which are functions of lf, mf, velocity gra-

dients, the grid size, and the time step. To understand results of numerical solutions of the Navier–Stokes

equations, the amount of numerical diffusion should be quantified. Based on the current FCT algorithm, it

can be quantified by using Eqs. (20) and (21). If numerical diffusion is not negligible, it should be taken into

account along with the viscous diffusion in analyzing simulation results.
For flows where the density and energy variations are negligible, viscous diffusion can be expressed

as
x-momentum : l
o
2u

o
2x

þ o
2u

o
2y

þ o
2u

o
2z

� �
;

y-momentum : l
o
2v

o2x
þ o

2v

o2y
þ o

2v

o2z

� �
;

z-momentum : l
o
2w

o2x
þ o

2w

o2y
þ o

2w

o2z

� �
;

ð22Þ
where l = mq. If the numerical viscosity is isotropic and constant, i.e., munum ¼ mvnum ¼ mwnum � m, the numerical

diffusion shown in Eq. (20) has a similar form to that in Eq. (22). Therefore, at least for flows where the

density and energy variations are negligible, numerical diffusion can be modeled in a fashion similar to that

of viscous diffusion. From this, two conclusions can be drawn:

(i) The effective total viscosity can be evaluated as the sum of the physical and numerical viscosities.
(ii) Numerical diffusion can be constructed to emulate viscous diffusion.

It is always important to minimize the numerical diffusion, and Eq. (21) can be used as a guide to keep the

numerical viscosity much smaller than the physical viscosity. For some applications, however, when imple-

menting viscous diffusion is difficult or expensive, Eq. (21) can be also used to construct the required numer-

ical viscosity to substitute for the physical viscosity. For highly compressible flows, numerical diffusion can

be quantified similarly. However, whether or not it can be used to substitute for viscous diffusion requires

further investigation, since the terms for viscous diffusion for compressible flows are much more complex.
4. Boundary-layer simulations

Here we present calculations of a laminar low-Mach-number boundary-layer formation on a flat plate.

The problem is solved using TINY3D, which combines LCPFCT [13] and a finite-volume implementation

of the viscous terms. Fig. 1 shows the schematic diagram of the computation set-up, and the computation

parameters are summarized in Table 1. The quantity M1 is the free-stream Mach number, and Reref is the
Reynolds number per centimeter. M1 is chosen as 0.1, so that compressibility is negligible. L = 45 cm is the

length of the flat plate, which is placed at 5 cm away from the inflow plane. The slip boundary condition is

used for the section between the inflow plane and the flat plate. Since the Reynolds number at the end of the

plate is approximately 300,000, the flow is laminar. The spanwise velocity is set to zero in the code, because

the problem is a two-dimensional flow.

4.1. Evaluation of numerical diffusion

From classical boundary-layer theory [21], the boundary thickness is proportional to the square root of

the dynamic viscosity m. The displacement thickness for a laminar boundary layer in the low-Mach-number

region is [21]



Inflow Outflow

Free Stream Boundary

Wall Boundary

∞U

z

x

Fig. 1. The schematic diagram of a boundary-layer flow on a flat plate. U1 is the inflow velocity. Free stream boundary: zero-gradient

conditions; inflow boundary: subsonic inflow conditions; outflow boundary: subsonic outflow conditions; wall boundary: adiabatic

and no-slip conditions.

Table 1

Parameters for boundary-layer simulations on a flat plate

M1 Dz Dx Zmax L Reref

0.1 0.02 cm 0.5 cm 2 cm 45 cm 6275
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d1 ¼ 1.7208

ffiffiffiffiffiffiffiffi
mx
U1

r
. ð23Þ
The effective viscosity includes contributions from both viscous diffusion and numerical diffusion. For vis-

cous diffusion, the dynamic viscosity coefficient used in the simulations is
mphys ¼ 0.631 cm2=s. ð24Þ

Since the smallest grid size is in the z-direction, the global Courant number is � ¼ Dt

Dz
ðU1 þ aÞ, where U1 is

the magnitude of the incoming velocity and a is the sound speed. Because Eq. (10) is used in LCPFCT [13]

and �2 � 1 for all cases discussed here, the numerical viscosity can be computed from Eq. (15). In addition,

since this problem is a laminar boundary-layer flow where few maxima and minima occur, the flux-limiter
contribution is expected to be negligible, and the smooth part of the numerical viscosity, Eq. (18), can be

used. Thus, the components of the numerical viscosity are
z-direction : mwnum � 1

6
ð1� DcÞ þ

3ð2Dc � 1Þ
2

o�w

oz
Dz

� �
ðU1 þ aÞ

�
Dz; ð25Þ

x-direction : munum � 1

6
ð1� DcÞ þ

3ð2Dc � 1Þ
2

o�u

ox
Dx

� �
ðU1 þ aÞ

�

Dx2

Dz
. ð26Þ
The local Courant numbers are �u ¼ uDt
Dx and �w ¼ wDt

Dz . Since the velocity gradient ou/ox is negligible for a flat
plate boundary-layer problem, its contribution to munum can be neglected. In addition, because ow/oz is neg-

ligible due to the constraint of the continuity equation, its contribution to mwnum can be also neglected. There-

fore, only the linear part of the numerical viscosity is considered:
z-direction : mwnum � ð1� DcÞ
6

ðU1 þ aÞ
�

Dz; ð27Þ

x-direction : munum � ð1� DcÞ
6

ðU1 þ aÞ
�

Dx2

Dz
. ð28Þ
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Combining Eqs. (27) and (28), and using a same Dc for all directions, we have
Fig. 2.

line: v
munum
mwnum

� Dx
Dz

� �2

. ð29Þ
Thus, the ratio of the components of numerical viscosity is proportional to the second power of the grid
aspect ratio. Here the grid aspect ratio Dx/Dz = 25, resulting in munum with a magnitude of 625 times that

of mwnum and producing a numerical viscosity far from isotropic. The viscous diffusion in this type of bound-

ary-layer flow, however, is dominated by diffusion in the vertical direction, and the diffusion in the stream-

wise direction is negligible. Therefore, anisotropic numerical viscosity is acceptable for such simulations,

and only the numerical viscosity in the vertical direction is needed to quantify the contribution of numerical

diffusion to the boundary layer growth.

4.2. The total effective viscosity

As shown in Eqs. (25) and (26), numerical diffusion is negligible when Dc = 1, so we use this value in the

test case to simplify the validation of TINY3D. This calculation is denoted as Case I in the paper. For all of

the simulations, a = 39,590 cm/s. Figs. 2 and 3 show the computed and theoretical [21] velocity profiles at

x = 40.5 cm and the friction coefficient Cf, where Cf is defined as
Cf ¼
l oU

oz




wall

1
2
qU 2

1
.

The agreement between computation and theory is excellent. The difference between theoretical and com-

puted values of Cf at the leading edge is due to the fact that boundary-layer theory is not valid near that

location.
We choose Dc = 0.999 for cases that are carried out for analyzing numerical diffusion. In all of the cal-

culations, the grid size and the Mach number are kept constant. Based on these conditions,
mwnum � 0.145

�
cm=s; ð30Þ
which shows that the vertical component of the numerical viscosity is inversely proportional to Courant
number �. The total dynamic viscosity can be obtained by calculating the sum of the physical viscosity

(from Eq. (24)) and the numerical viscosity (from Eq. (30)):
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Normalized velocity profiles as a function of the dimensionless coordinate g for Case I at x = 40.5 cm, where g ¼ z
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iscous simulation with � = 0.125 and Dc = 1.0; square: prediction of boundary-layer theory.
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mtotal �
0.145

�
þ 0.631

� �
cm=s. ð31Þ
We control the amount of numerical diffusion by varying the Courant number, which is changed by adjust-

ing the time-step in the simulations.

Table 2 summarizes the information of the five cases we have carried out. The ratios of the computed

and the theoretical boundary thicknesses are shown in this table. Quantity d1 is the displacement thickness

computed from simulations, and (d1)total and (d1)phys are the theoretical predictions using either the effective

total viscosity or the physical viscosity:
ðd1Þtotal ¼ 1.7208

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmphys þ mnumÞx

U1

s
; ð32Þ

ðd1Þphys ¼ 1.7208

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmphysÞx
U1

s
. ð33Þ
As mentioned above, there is negligible numerical diffusion in Case I, which is our test case. In Cases II–IV,

the total viscous diffusion has both physical and numerical contributions, and the amount of numerical dif-

fusion is comparable to that of physical diffusion. For example, numerical diffusion is more than three times

the physical diffusion in Case II. In Case V, the viscous contribution is turned off, and the boundary layer
growth is exclusively introduced by the numerical diffusion in the computation. The comparisons between

d1 and (d1)total are very good, which is consistent with the analysis in Section 3 that the effective total
2

rison between displacement thicknesses computed from simulation results and those predicted by boundary-layer theory using

ffective total viscosity and physical viscosity

� NS/Euler Dc mnum (cm2/s) mtotal (cm
2/s) mnum

mphys
d1

ðd1Þtotal
d1

ðd1Þphys

0.125 NS 1.0 0.0 0.631 0.0 1.0 1.0

0.0625 NS 0.999 2.32 2.95 3.68 1.02 2.20

0.125 NS 0.999 1.16 1.79 1.84 1.02 1.71

0.25 NS 0.999 0.58 1.21 0.92 1.00 1.39

0.125 Euler 0.999 1.16 1.16 N/A 1.02 N/A
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viscosity for flows where density variation is negligible can be modeled as the sum of the physical viscosity

and the numerical viscosity. On the other hand, if only the physical viscosity is used to calculate the the-

oretical displacement thickness, as shown in Eq. (33), the difference between d1 and (d1)phys can be very

large, and it increases as � decreases. Since the solution changes as � changes when numerical viscosity is

not included, it can appear as though the simulations are not giving a unique solution.
Velocity profiles are shown in Figs. 4a–4d, where both the physical viscosity and the effective total vis-

cosity are used to compute the dimensionless coordinate g ¼ z
ffiffiffiffiffiffi
U1
mx

q
. Again, comparisons between the sim-

ulations and theory are very good if the effective total viscosity is used. If only the physical viscosity is used,

however, the difference between the numerical results and the predicted values is large, similar to what is
shown in the results of the displacement thickness discussed above. In addition, when numerical viscosity

is used to analyze the results, as shown in Fig. 4d, the inviscid simulation compares well with the prediction

of boundary-layer theory. This agrees with our conclusion in Section 3 that viscous diffusion can be emu-

lated by numerical diffusion for flows where density variation is negligible.
5. Stability analysis

In the previous sections, we have developed an analytical model for the numerical viscosity in the FCT

algorithm and have it tested using laminar boundary-layer simulations. In this section, we will evaluate the

maximum allowed mask coefficient and the minimum required numerical viscosity for a given problem. In

addition, we will also evaluate the upper limit on the cell Reynolds number and the corresponding maxi-

mum allowed grid resolution for a given amount of antidiffusion.

If the function defined in Eq. (16) has a top-hat profile across a cell, the FCT algorithm (7) can be rewrit-

ten in a way similar to that used in [16]:
Fig. 4

x = 40

physic
qn
i ¼ Lhðqo

i Þ þ gðqo
i ; xiÞ½Llðqo

i Þ � Lhðqo
i Þ�; ð34Þ
where superscripts h and l denote ‘‘high-order’’ and ‘‘low-order’’, respectively. The function Lhðqo
i Þ is the

base algorithm, which is a high-order algorithm applied in smooth regions where the flux limiter is not acti-

vated. The function Llðqo
i Þ is a lower-order algorithm with properties of unconditional stability and mono-

tonicity. It is applied when the flux limiter is fully activated. In the case of a constant convection velocity,

the full algorithm shown in Eq. (34) has an amplification factor for a wave number j:
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a. Normalized velocity profiles as a function of the dimensionless coordinate g for Case II (� = 0.0625 and Dc = 0.999) at

.5 cm. Solid line: viscous simulation using the effective total viscosity to calculate g; dashed line: viscous simulation using

al viscosity to calculate g; square: prediction of boundary-layer theory.
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Fig. 4b. Normalized velocity profiles as a function of the dimensionless coordinate g for Case III (� = 0.125 and Dc = 0.999) at

x = 40.5 cm. Solid line: viscous simulation using the effective total viscosity to calculate g; dashed line: viscous simulation using

physical viscosity to calculate g; square: prediction of boundary-layer theory.
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Fig. 4c. Normalized velocity profiles as a function of the dimensionless coordinate g for Case IV (� = 0.25 and Dc = 0.999) at

x = 40.5 cm. Solid line: viscous simulation using the effective total viscosity to calculate g; dashed line: viscous simulation using

physical viscosity to calculate g; square: prediction of boundary-layer theory.
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Fig. 4d. Normalized velocity profiles as a function of the dimensionless coordinate g for Case V (� = 0.125 and Dc = 0.999) at

x = 40.5 cm. Solid line: inviscid simulation using numerical viscosity to calculate g; square: prediction of boundary-layer theory.
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AðbÞ ¼ AhðbÞ þ lf
cGðbÞ; ð35Þ
where b = jDx and Dx is the grid size. The parameter lf
c is the antidiffusion coefficient applied in smooth

regions, Ah(b) is the amplification factor introduced by algorithm Lhðqo
i Þ, and lf

cGðbÞ is the contribution

from the flux limiter. Functions Ah(b) [11] and G(b) are
AhðbÞ ¼ 1� 2ðmf � lf
c Þð1� cos bÞ � I� sin bð1þ 2lf

c ð1� cos bÞÞ; ð36Þ

GðbÞ ¼ �2
gðbÞ � fqoðbÞ½ð1� cos bÞð1� I� sin bÞ�g

qoðbÞ ; ð37Þ
respectively, where I indicates
ffiffiffiffiffiffiffi
�1

p
, * is the convolution operator, and g(b) and qo(b) are the Fourier trans-

forms of gðqo
i ; xiÞ and qo

i , respectively.

If a diffusion term is added to Eq. (1) and is discretized by a second-order central algorithm, the ampli-
fication factor A(b) becomes
AðbÞ ¼ 1� 2 mf � lf
c þ

�

ReDx

� �
ð1� cos bÞ � I� sin bð1þ 2lf

c ð1� cos bÞÞ þ lf
cGðbÞ; ð38Þ
where U is the convection velocity and ReDx = uDx/ mphys is the cell Reynolds number. If Eq. (10) is used for

mf and lf, the stability condition in Eq. (38) is controlled by �, ReDx , Dc, and G(b). Thus, for a specified G(b)
and �, the stability condition can be expressed as either
Dc 6 Dmax
c ; given ReDx;
where Dmax
c is the maximum allowed mask coefficient, or
Remin
Dx 6 ReDx 6 Remax

Dx ; given Dc;
where Remin
Dx and Remax

Dx are the lower and upper limits of the cell Reynolds number. Conditions for ReDx
reflect those for Dx if U and mphys are fixed.

The function G(b) defined in Eq. (37) depends on the distributions of the convected variables, the choice

of flux limiter, the Courant number, and the grid resolution. Therefore, the stability condition is problem-
dependent, and there may not be a universal analytical solution to describe this condition. Even for a simple

problem, such as the convection of a sine or cosine wave, tedious analytical and numerical work may be

required to evaluate the effects of the flux limiter on the stability condition. On the other hand, the stability

condition for Lhðqo
i Þ can be easily and precisely defined, and the result given below will mainly focus on

Lhðqo
i Þ.

Fig. 5a and Fig. 6a show Dmax
c as a function of � and Dx, respectively, for a given U and mphys, when the

flux limiter is not used. The data are only shown for the values of � required to maintain positivity, � 6 0.5

[13]. As shown in Eq. (18), the smooth part of the numerical viscosity can be rewritten as mnumjsm � (1 � Dc)
UDx/6�, indicating that there is a minimum numerical viscosity corresponding to a Dmax

c . This minimum

value of mnumjsm is shown in Figs. 5b and 6b. The quantity Dmax
c is only a function of � for inviscid simu-

lations, whereas in viscous simulations, it is also a function of m, Dx, and U. We expect, however, that

the presence of the flux limiter will alter the distribution of Dmax
c to some extent, and, even for inviscid sim-

ulations, it will also introduce some dependence of Dx and of other parameters.

Without considering the flux limiter, and for a given amount of antidiffusion or a given value of Dc , the

lower and upper limits of ReDx can be derived from the stability condition:
Remin
Dx ¼ �

1
2
� ðmf � lf

c Þ
; ð39Þ

Remax
Dx ¼ �

HðbÞjmax � ðmf � lf
c Þ
; ð40Þ
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Fig. 5a. Maximum allowed mask coefficient Dmax
c for the base algorithm as a function of the Courant number �. Solid line: inviscid

simulation; other lines: viscous simulations with mphys = 0.631 cm2/s and U = 39590 cm/s; dashed line: Dx = 0.01 cm; dotted line:

Dx = 0.02 cm; dashed–dotted line: Dx = 0.03 cm.

0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

0.03 cm

0.01 cm

0.02 cm

ν n
u

m
ν p

hy
s

∋

Fig. 5b. Minimum required numerical viscosities scaled by physical viscosity for the base algorithm as a function of the Courant

number �. Dx = 0.01, 0.02, and 0.03 cm are plotted for both inviscid (solid lines) and viscous cases (dashed lines). Physical viscosity and

the convection velocity are mphys = 0.631 cm2/s and U = 39590 cm/s, respectively.
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Fig. 6a. Maximum allowed mask coefficient Dmax
c for the base algorithm as a function of the grid size Dx. Courant number � = 0.1, 0.2,

and 0.3 are plotted for both inviscid (solid lines) and viscous cases (dashed lines). Parameters used for the viscous cases are

mphys = 0.631 cm2/s and U = 39590 cm/s.
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Fig. 6b. Minimum required numerical viscosities scaled by physical viscosity for the base algorithm as a function of the grid size Dx.
Courant number � = 0.1, 0.2, and 0.3 are plotted for both inviscid (solid lines) and viscous cases (dashed lines). Physical viscosity and

the convection velocity are mphys = 0.631 cm2/s and U = 39590 cm/s, respectively.
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where
Fig. 7a

dashed
HðbÞ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½� sin bð1þ 2lf

c ð1� cos bÞÞ�2
q

2ð1� cos bÞ . ð41Þ
Eq. (40) is valid if ðmf � lf
c Þ < HðbÞjmax, when numerical diffusion is not sufficient to stabilize the algorithm.

On the other hand, if ðmf � lf
c Þ P HðbÞjmax, the algorithm is stable and Remax

Dx ¼ 1, since numerical diffu-

sion itself is large enough to stabilize the algorithm. The minimum value of H(b)jmax is �
2/2, which occurs

when no antidiffusion is present. Quantities Remin
Dx and Remax

Dx in Eqs. (39) and (40) depend on both � and the

amount of antidiffusion. Fig. 7a shows Remax
Dx as a function of � for selected values of Dc. The wave number

corresponding to H(b)jmax around b = 0.83 for Dc = 1. Either decreasing � or Dc alleviates the constraint of

the stability condition, since both ways introduce more numerical diffusion. In addition, Remax
Dx with a large �

is less sensitive to the magnitude of Dc. Fig. 7b shows the maximum grid size corresponding to Remax
Dx when

the physical viscosity and the sound speed of the current boundary-layer simulations are used.
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. Upper limits of the cell Reynolds number for the base algorithm as a function of the Courant number �. Solid line: Dc = 1.0;

line: Dc = 0.999; dotted line: Dc = 0.998.
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Fig. 7b. Maximum allowed grid size for the base algorithm as a function of the Courant number �. Solid line: Dc = 1.0; dashed line:

Dc = 0.999; dotted line: Dc = 0.998. Physical viscosity and the convection velocity are mphys = 0.631 cm2/s and U = 39590 cm/s,

respectively.

J. Liu et al. / Journal of Computational Physics 208 (2005) 416–434 431
The lower limit Remin
Dx is fortunately small: its value is less than 2 for � 6 0.5. On the other hand, the

restriction imposed by Remax
Dx in Eq. (40) is difficult to meet. For example, as shown in Figs. 5b and 6b, Case

IV with D x = 0.02 cm requires Dc < 0.9977, resulting a numerical viscosity more than three times that of

the physical viscosity in the vertical direction. On the other hand, if Dc = 0.999, Case IV requires
Dx < 0.0058 cm, and Case I needs Dx < 0.009 cm, as shown in Fig. 7b. Thus, either a large amount of

numerical diffusion or a very fine mesh is required to meet the stability condition of Lhðqo
i Þ. This restriction

is overkill since the upper limit is governed by the most unstable modes. Those unstable modes have large

wave numbers and may only occur at a few locations or a few times. Since the stability of the most unstable

modes can be controlled locally by activating the flux limiter, the stability condition of the full algorithm

(34) will be less severe than that of Lhðqo
i Þ. Further study of G(b) is needed, however, to assess quantitatively

the modification on the stability condition by the flux limiter.
6. Discussion

As shown in Eqs. (18) and (19), the flux limiter will contribute to the numerical diffusion. In addition, as

shown in Eq. (21), the anisotropy of numerical viscosity will also affect simulations if there are large velocity

gradients in more than one direction. The analysis in previous sections of this paper focused primarily on

cases for which only the smooth part of the linear portion of the numerical viscosity is important, and a

constant mask coefficient can be used in all directions. In this section, however, we will briefly discuss
the effects of the flux limiter and of the anisotropy of numerical viscosity on numerical diffusion.

6.1. Effect of the flux limiter on numerical diffusion

Flux limiters were originally proposed to maintain the monotonicity of the convected variables and to

improve stability condition of the algorithm. Although a flux limiter allows larger grid sizes to be used with-

out introducing a large amount of numerical diffusion globally, it does introduce a large amount of numer-

ical diffusion to a few locations where the flux limiter is activated. If we were to define a distribution of
numerical viscosity in space, we would expect some large spikes in the distribution. The frequency of those

spikes depends on the flow field (such as the occurrence of the local maxima or minima), grid resolution,

and the choice of flux limiter. Since a lower-order algorithm is used when the flux limiter is activated, it is
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important to use sufficient grid resolutions to keep the frequency of those spikes relatively low. This will

maintain the global accuracy and reduce the contribution of flux limiter to the overall numerical diffusion.

For the laminar boundary-layer problem studied here, the effect of the flux limiter is expected to be

small, since local maxima and minima only appear in very few locations. This is consistent with our obser-

vation that the smooth part of the numerical viscosity model shown in Eq. (18) is a good estimate of numer-
ical diffusion.

Currently, the numerical diffusion introduced by flux limiters is used to represent the subgrid-stress mod-

els in large-eddy simulations [16–20]. Margolin and Rider [20] designed implicit subgrid-stress models based

on the assumption that the algorithm does not have much dissipation on resolved scales, but is strongly

dissipative when the solution is unresolved. Since numerical diffusion in FCT can be made small in regions

where the flux limiter is absent and large where the flux limiter is activated, FCT is ideally suited for the

implicit subgrid-stress modeling. Because flux-limiting is a nonlinear process, it redistributes the energy

of the convected variables among a range of scales, which is especially true in the region at large wave num-
bers. It is not always guaranteed, however, that the contribution from a flux limiter can accurately represent

the physics governing subgrid scales and can be used as an appropriate model for subgrid stresses. Fureby

and Grinstein [16] mentioned that the implicit subgrid stress model must be able to mimic the subgrid stress

turbulence in terms of providing accurate inertial subrange and satisfying the near-wall requirement. There-

fore, it is important to study and understand the performance of flux limiters in wave space, such as the

evaluation of G(b). This would allow us to develop flux limiters that more accurately mimic subgrid-stress

turbulence.

6.2. Effect of anisotropy of numerical viscosity

We have shown that an anisotropic numerical viscosity is acceptable for problems such as boundary-

layer flows, where the velocity gradient is significant in only one direction. It is not appropriate, however,

for flows where there are large velocity gradients in more than one direction, such as in mixing-layer prob-

lems with vortex roll-up. Previous inviscid simulations of mixing layers [12] showed that, if there are vor-

tices forming in the flow, a simulation with Dx = 2.5Dz showed considerably larger numerical diffusion than

that with Dx = Dz. The high-strain region was diffused more in the x-direction in the simulation with Dx
= 2.5Dz. This observation is consistent with what we find in Eq. (29). That is, numerical diffusion is very

sensitive to the grid size, and the ratio between the vertical and the streamwise numerical viscosity is

roughly proportional to the second power of the grid-aspect ratio when Dc is constant. Thus, the stream-

wise numerical diffusion in a simulation with Dx = 2.5Dz is roughly 6.25 times that of a simulation with

Dx = Dz.
Since the anisotropy of numerical viscosity is very sensitive to the grid-aspect ratio, if numerical diffusion

cannot be kept small, it is important to adjust Dc to construct an isotropic numerical viscosity for flows

where there are large velocity gradients in more than one direction. As shown in Eqs. (25) and (26), if
the contributions to the numerical viscosity by the local velocity gradients are kept small (for example,

by using a small time step), an isotropic viscosity would only require a different constant in each direction

based on the grid-aspect ratios. If those contributions from the velocity gradients cannot be kept small,

however, a variable Dc should be used to balance the gradient effects.
7. Conclusions

Numerical diffusion in the flux-corrected transport algorithm [1,2], as implemented in LCPFCT [13] and

embedded the Navier–Stokes solver TINY3D, has been studied analytically and numerically for problems

in which physical diffusion plays an important role. The equivalent partial differential equation for the FCT
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algorithm was derived, and an analytical model for the numerical viscosity was formulated. We demon-

strated that, for flows with small density variations, numerical diffusion can be modeled in a way similar

to that of viscous diffusion. The total effective viscosity can be evaluated as the sum of physical and numer-

ical viscosities, and viscous diffusion can be emulated by numerical diffusion. A series of low-Mach-number

laminar boundary-layer simulations has been carried out to test the analytical model of the effective total
viscosity, and the results agree very well with the predictions.

In addition to the development and the testing of the numerical viscosity model, we also used the

stability condition to derive the minimum required numerical viscosity, the upper and lower limits of

the cell Reynolds number, and the maximum allowed grid size. We found that, without the flux limiter,

either a large amount of numerical diffusion or a very fine mesh is required to meet the stability con-

dition. The flux limiter improves the stability condition and reduces the need of introducing large

numerical diffusion globally. In addition, the effect of the anisotropy of the numerical viscosity is also

discussed. It is important to use an isotropic numerical viscosity if the velocity gradients are large in
more than one direction.

Although the analysis presented in this paper focuses on a standard version of FCT, the general meth-

odology used in this paper could be applied to algorithms that have a similar structure to what is in FCT.

For example, for users of PPM and TVD algorithms, this approach could give useful information on the

numerical diffusion inherent in the algorithms.
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